What If I Don’t Like Any of The Choices?
The Limits of Preference Elicitation for Participatory Algorithm Design
Samantha Robertson, Niloufar Salehi
- Needs
- Values
- Goals

1. Option A
2. Option B
3. Option C
Preferences ≠ Participation
An example...

Students

Preferences over schools

Priorities over students

In SFUSD: sibling, preK/TK, CTIP1, attendance area

Schools

Matching algorithm

Best possible assignments for students subject to school priorities
An example...

Preferences over schools

Priorities over students

Matching algorithm

Best possible assignments for students subject to school priorities

Students

Preferences over schools

Schools

Priorities over students

In SFUSD: sibling, preK/TK, CTIP1, attendance area
An example...

Students

Preferences over schools

Schools

Priorities over students

Matching algorithm

Best possible assignments for students subject to school priorities

In SFUSD: sibling, preK/TK, CTIP1, attendance area
An example...

Students

Preferences over schools

Priorities over students

In SFUSD: sibling, preK/TK, CTIP1, attendance area

Schools

Matching algorithm

Best possible assignments for students subject to school priorities
An example...

Students

Preferences over schools

Priorities over students

In SFUSD: sibling, preK/TK, CTIP1, attendance area

Matching algorithm

Best possible assignments for students subject to school priorities

Schools
Three assumptions

1. Preferences are inherent and fixed

2. Preferences **fully encapsulate** relevant values, needs, and goals

3. Some aggregation of these preferences is **socially optimal**
1. Preferences are inherent and fixed

What do I prefer?

1. School A
2. School B
3. School C
4. School D
5. ???
6.
7.
...

[Image of a character with a list of schools]
1. Preferences are **inherent and fixed**

- **Students**
 - Preferences over schools
 - In SFUSD: sibling, preK/TK, CTIP1, attendance area

- **Schools**
 - Priorities over students
 - Inherent, fixed
 - Time consuming, situated

- **Matching algorithm**
 - Best possible assignments for students subject to school priorities
2. Preferences **fully encapsulate** relevant values, needs, and goals

What if I don’t like any of the choices?
2. Preferences **fully encapsulate** relevant values, needs, and goals

- **Students**
 - Preferences over schools
 - Priorities over students
 - "All choice"
 - Limited options, unequal access

- **Schools**
 - In SFUSD: sibling, preK/TK, CTIP1, attendance area
 - Added advantage to underserved students
 - Cannot address access and participation barriers

- **Matching algorithm**
 - Best possible assignments for students subject to school priorities

What about alternatives to choice?
3. Some aggregation of these preferences is socially optimal

What do we prefer?
3. Some aggregation of these preferences is socially optimal

Students

Preferences over schools

Priorities over students

In SFUSD: sibling, preK/TK, CTIP1, attendance area

Schools

Matching algorithm

Efficiency is optimal

Best possible assignments for students subject to school priorities

Outcomes constrained by preference patterns
Expanding participation beyond preferences

● Alternative formats
 ○ What formats would work well?

● More opportunities
 ○ When is participation appropriate?

● Discourse and deliberation
 ○ How can we build accessible tools and infrastructure to involve stakeholders in the design and governance of algorithmic systems?
Takeaways

- Preferences are an intuitive way to incorporate participation
 - Ask people what they want → Give as many people as possible what they want

- But, the story is more complicated than that...
 - How do we ask people what they want? Who responds?
 - What are the alternatives they can choose from? Who benefits? What’s missing?
 - How do we decide who gets what they most want? How does that drive change?
Thank you!

samantha_robertson@berkeley.edu
@samanthaa_rr